
Chain Dynamics in Magnetorheological Suspensions
A. P. Gast t, E. M. Fursd, aDepartment of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA,

alice @ cherneng.Stanford.EDU

1 Introduction

Magnetorheo]ogical (MR) fluids are colloidal suspensions of

pammagnetic particles in a non-magnetic fluid. These flu-

ids, along with their electrical analogues, electrorheologica]

(ER) fluids, have been proposed as controllable fluids, for use

in electromechanical devices such as dampers, clutches and

brakes. [1] When exposed to an external magnetic field, the

particles acquire dipole moments aggregate to form chains in

the field direction. The fluid structure depends on the volume

fraction; dilute suspensions form weakly-interacting single-

particle chains, while when more concentrated, the particle

chains cross-link laterally into a dense network. The latter

structure is responsible for the unique rheo/ogical properties

of MR fluids: the quick formation of a network in response

to an external field creates a rapid liquid-to-solid transition.

Aside from their practical applications, MR fluids are of fun-

damental interest because they allow us to probe the structure

and dynamics of a suspension of particles interacting via a

"tunable" anisotropic interaction.

Recently, we have studied microscopic properties, such as

the kinetics of chain growth and low-energy structures [2, 3].

The suspension dynamics [4, 5] are of interest since it has been

proposed that Landau-Peieds thermal fluctuations of dipolar

chains could be responsible for long-range attractions between

chains [6]. Rigid dipolar chains produce a transverse magnetic

field that decreases approximately as ezp(-p/a) where p is

the distance from the chain anda is the dipolar particle radius.

Thus, chains separated by a distance greater than one diameter

should interact weakly. In contrast, taking into account thermal

fluctuations produces a mean-squared field that decreases as

a power law: (X/_ "" kvrk--T-da/P2" Thus, fluctuations may

be responsible for the long-range lateral interactions in dipolar

chains that greatly affect their response and final structures.

We report our initial studies of the dynamics of MR fluid

suspensions using diffusing-wave spectroscopy (DWS). The

application of DWS to study the dynamics of MR fluids has

several advantages: first, it allows us to probe suspensions

capable of forming long chains. Second, the highly multiply-

scattered light probes smaller length and time scales than those

accessible through single scattering experiments or micro-

scopic observation, complementing those studies. Finally, we

can probe thick samples to minimize interfacial effects on our

results.

2 Experimental

We synthesized MR emulsion droplets following a method

due to Bibette [7]. A ferrofluid (Rhone-Poulenc), composed

of mono-domain iron oxide particles suspended in octane,

is emulsified into water using sodium dodecyl sulfate, SDS

(Sigma, cmc = 2.351 g/ml). The rough emulsion is fraction-

ated by seven successive depletion aggregations with SDS

micelles. We vary the particle density by manipulating the

amount of octane in the ferrofluid; the particles in this study

have a density of approximately l.lg/ml. We resuspend the

particles in a D20-SDS solution (p = 1.10g/ml) at the SDS

cmc to minimize sedimentation effects in our light scattering

experiments. In this study we use particles of approximately

240nm diameter, at a volume fraction, _bof 0.005 and an esti-

mated magnetic susceptibility X of 1.2.

When placed in an external magnetic field, the particles

interact via an anisotropic dipolar potential

U(r,0) =
\ lzo / r 3 (1)

where 0 is the angle the particle centers form with the field

direction, r is the distance between particle centers, and/z =

_ra3#oxH is the induced dipole for a particle of radius a in

a field of magnitude H. We characterize the dipole strength

with [81:

-Urea2: _r#oa3x2H 2
,_ -- (2)
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Our experiments are conducted over a range of dipole strengths:

,_ =4, 7, II, and 16.

The dynamics of our MR fluid are studied using a trans-

mission geometry [9]. The MR fluid is placed in a spectropho-

tometer cuvette (Spectrocell) with a pathlength L = 10ram.

The cuvette is centered in a uniform magnetic field generated

by Helmholtz coils. Linearly polarized light from a 35roW

HeNe (Spectraphysics) at 632.8nm is expanded to a plane

wave with a 10× laser collimator and illuminates the face of

the sample perpendicular to the field direction. The transmitted

diffuse light is collected by two pinholes coupled to a multi-

mode fiber optic. A cross-polarizer transmits only depolarized,

highly multiply-scauered light. The intensity fluctuations are

measured using a photomultiplier O_om EMIl with a built-

in amplifier-descriminator. We use a commercial correlator

(Brookhaven Instruments, BI-9000AT) to calculate the inten-

sity autocorrelation, gt2)(t). The electric field autocorrelation

gt 1)(t), is found using the Siegert mlation,a(2)(t) = I,q_0(t)12.

106



3 RESULTS AND DISCUSSION

When the magnetic field is applied, the dipolar particles

rapidly aggregate to form chains. On longer time scales, the

chains experience lateral interactions and coalesce to form

thicker columns. Our experimental protocols attempt to pro-

duce conditions where the fluctuations of individual chains

dominate the system dynamics. First, by minimizing the den-

sity difference between our droplets and the suspending fluid,

we reduce the sedimentation-induced aggregation of chains.

During our dynamic studies, the chains are grown at ,_ = 16

and after 12 seconds, the desired field strength is applied. This

provides a consistent starting point for measurements at each

dipole strength in terms of the suspension structure, and avoids

the initial ballistic motion when the field is turned on. Starting

at 15 seconds, we collect autocorrelation data for 60 seconds.

To assess the effect of the starting time, we repeat the ex-

periments switching the field at 85 seconds and starting the

autocorrelation at 90 seconds.

In the diffusion limit of light transport in turbid media, a

photon executes a random walk with an average step length

of l*, characterizing the distance over which its direction is

randomized. Since structure and interactions affect the value

of l* [9, 10, 11, 12], we measure the diffuse transmittance

of an expanded laser beam to monitor the change in light

transport properties during an experiment. Changes in l* are

taken into account in our analysis. The initial value of l* is

found from by fitting the field-off data. The characteristic

photon absorption length [13] l_ = V/P--/3a, where a is the

absorption coefficient, is found independently by varying the

pathlength and measuring the diffuse transmittance through a

sample without the magnetic field.

Light transport properties are also measured by removing

the collimator and focusing the incident beam to a point source

on the sample cuvette face. The transmitted diffuse light is

collected on a ccd array and recorded on videotape at a rate

of 30Hz. Images are captured from tape by averaging 20

video frames and processed to assess the degree and evolution

of anisotropic light transport in our samples after the field is

applied and the magnetic chains begin growing.

3 Results and Discussion

Effects of anisotropic light transport. In diffusing wave

spectroscopy, the electric-field autocorrelation is a weighted

sum

f0 _
gt')(r, t) = dT-P(r,7-),_p[(-e/3l')ko_(aT2(t))7-]

(3)

where (AT 2(t)) is the mean-squared displacement of the scat-

terers and c is the speed of light in the medium, and the prob-

ability P(r, 7-) that a diffusing photon will arrive at position r

Figure 1 : Images showing depolarized diffuse intensity from

a point source transmitted through a 10ram sample at )_ = 16.

(a) Field on 45 seconds. (b) Field on 150 seconds.

and time _', is determined by solving the diffusion equation for

the experimental geometry. The MR system is complicated

by the fact that the suspension structure becomes anisotropic

as the particles aggregate to form chains. In this case, the

diffusion equation for the light energy density U is anisotropic

OU(r, 7-) _ (D[IV2 -t- D±V 2 -4- l/tz_)U(r, 7-) (4)
07-

where #_ is the characteristic time for photon absorption

and DII and D± are the light diffusion constants in the di-

rection parallel and perpendicular to the orientation of the

chains, respectively. The diffusive probability is found from

P(r, 7-) = U(r, 7-)/fo': dT-U(r, 7-). The anisotropic light

diffusion problem may be reduced to the familiar isotropic

form by rescaling the axes, such that for our geometry we

have [14]

- D_ U(r,7-) = 0 (5)

where D is the avcrage diffusivity and _ = V/-19-/D±z. This

equation is valid as long as the planc-wavc conditions are

met experimentally; that is, the component of I* along the

anisotropy is much less than the width of our expanded beam.

Eq. (5) is solved using zero net-flux boundary conditions dis-

cussed elsewhere [9].

We note that Eq. (3) assumes the dynamic scattering

cross-section can be approximated with its form for a dilute

colloidal suspension [15]. Recently, an anisotropic multiple

light scattering formalism has been developed and applied

to light scattering in nematic liquid crystals [16]; however,

the nature of light scattering in nematics differs from that in

colloidal systems due to the smaller length-scale structures. In

the future, adaption of this formalism to anisotropic colloidal

suspensions may improve the analysis.

The magnitude of the light transport anisotropy is estab-

lished through the steady-state transmission of a point-source

through the sample. Fig. (1) shows images of the diffuse de-

polarized intensity collected by our ccd camera for 45 and 150
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3 RESULTS AND DISCUSSION

seconds after the field is applied at )_ = 16. The ratio of the

major and minor axes increases rapidly to 1.6 at 15 seconds

as the chains are initially formed. At 45 seconds, the ratio is

1.8 and increases slowly to 2.2 at 150 seconds; this relatively

small anisotropy validates the use of Eq. (5). The ratios are

insensitive to switching the field strength to lower values, and

the images return immediately to the isotropic values when the

field is turned off.

Estimation of l* and l,_. The absorption length l,, is

1.124-0.08ram. Using this value and the calculated particle

self-diffusion coefficient D,, we fit the field-off autocorre-

lation to find l" = 790+10#ra as shown in Fig. (2). The

relatively large value of l* compared with systems such as

polystyrene spheres [10] can be attributed to the lower con-

trast of our droplets.

As mentioned previously, changes in the spatial arrange-

ment and interactions of scatterers alter the diffuse transmit-

tance through the sample. In the case of dense or interact-

ing suspensions, l* is proportional to the weighted average

over the particle form factor P(q) and structure factor S(q)

[9, 10, l l, 12]:

l* -_ cc 2k0 -2/,, q2p(q)S(q)d_. (6)

To assess the effect of the dipolar interactions and chain struc-

lures on l*, we monitor the diffuse transmittance through our

sample and measure the normalized increase of the scattering

length Al*(t)/l*(O). For L > la, the diffuse transmittance

may be written as [131:

10/" 1
T( L ) = -_-_ezp(- L / , ). (7)

Expanding Eq. (7) to three terms and dividing by T(0), we

find an expression for the normalized change in the diffuse

transmittance AT(t)/T(O) as a function of Al*(t)/l*(O) [17].

During the experiments, kl*(t)/l*(O) increases rapidly

to 0.20 ten seconds after applying the field, then increases

linearly to 0.24 at 150 seconds. Thus, l* varies by less than

approximately 2% during our autocorrclation measurements

and does not change when the field is stepped to lower values;

it does return immediately to zero when the field is turned

off. This suggests that structure dominates l* and there is a

minimal amount of structural change when the field is reduced

for our dynamic measurements.

DWS results. As shown in Fig. (2), the autocorrelation

g(O(t) for the field-off data is well-described by the isotropic

solution of Eq. (3) by fitting l* using our measured value for

l_ and calculated value for D,. The next three curves show

g(z) (t) measured 90 seconds after applying the field. The auto-

correlations now show a shift to longer decay times, increasing

with higher values of ,_. Unlike the isotropic case, the auto-

correlations for the dipolar systems cannot be fit using a single
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Figure 2: Measured DWS autocorrelafion functions for the

isotropic MR suspension and three field strengths measured

90s after applying the initial field. The solid line shows a fit

of the solution to Eq. (3). Increasing ,X shifts the decay to

longer times.

characteristic decay time such as (Doko2) -I . Instead, we cal-

culate the mean-squareddisplacement with time (Ar2(t)) from

the solution of Eq. (3).

Fig. (3) shows (Ar2(t)) scaled by the particle diameter d

for each dipole strength as a function of scaled time tD,d -2.

The straight solid line in each pitt represents self-diffusion,

which the field-off data follows very well. When the field is

applied, the initial mean-squared displacements follow a simi-

lar slope which is less than that of free three-dimensional (3D)

diffusion, but consistent with two-dimensional (2D) diffusion

(the dashed, straight lines in Fig. (3)) irrespective of dipole

strength. As the time increases, (Ar2(t)) diverges further

from the free diffusion limit, exhibiting a constrained, sub-

diffusive motion. The magnitude of deviation from the solid

line increases as we increase the dipole strength, suggesting

that the DWS experiment is sensitive to the small-wavelength

motions of the dipolar chains. The chains should exhibit a

spectrum of modes of motion, including short-time individual

"vibrations" of each particle, collective chain motion at inter-

mediate time-scales, and eventually the long-time diffusion of

the entire chain. Since the scauering data exhibits the same

initial slope, our experiments appear to measure the Brownian

motion of the particles comprising the dipolar chains. Particle

diffusion is hindered by constraint to the chain through the

dipolar interaction with its neighbors. Movement perpendic-
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Figure 3: (Ar2(t)) calculated from gO)(t) using the solu-

tion to Eq. (3). The straight, solid line represents 3D self-

diffusion, the dashed line represents 2D self-diffusion, and

the five curved solid lines are simulation results for dipolar

chains of 100 particles with ), = 5, 10, 15,20, and 26, in-

creasing from left to right in the figures. (a) DWS data taken

15 seconds after applying the magnetic field. (b) Data taken

90 seconds after applying the field.

ular to the chain direction dominates, indicated by the initial

2D motion, while the constraint increases as we increase the

dipole strength, thereby stiffening the chains. It is also ap-

parent that the mobility 90 seconds after applying the field is

reduced further from the freely-diffusing limit than that mea-

sured 15 seconds after applying the field, possibly due to the

lateral aggregation of chains with time. This is consistent with

the slow increase in l" measured through the diffuse transmit-

tance. Lateral aggregation should stiffen the magnetic chains

further, and thus decrease chain segment motion.

Brownian dynamics simulations. To test our interpreta-

tion of the DWS experiments, we conduct Brownian dynamics

simulations of magnetic chains over the time scales observed

in our experiments [18, 19]. Briefly, the simulations solve the

equation of motion of the v th particle taking into account three

forces acting on it: a dipolar force between neighboring parti-

cles Ff'", a stochastic Brownian force F B''_, and an excluded

volume interaction F_ TM. Again scaling displacement with

the panicle diameter d and time with the characteristic time

a free panicle diffuses its diameter D,d -2, the dimensionless

equation of motion, neglecting inertia, is written as:

¢ = ++F,+-,++F,+;,+ <8)

4 CONCLUSIONS

where A is the dipole strength. The simulations are conducted

for )_ = 5, 10, 15, 20, and 26 using ensembles of 500 chains

for proper averaging. We compute the mean-squared deviation

of each particle, (ArC(t)) averaged over all particles in the

simulation for chains of 20 and 100 particles.

Since our experiments are most sensitive to lateral fluctu-

ations in the chain, we extract the mean-squared displacement

projected onto a plane orthogonal to the chain direction. We

compare the 100 particle simulation results to the DWS data

in Fig. (3). The differences in (ArC(t)) using 20 panicles

showed no consistent trend and did not exceed the expected

accuracy. The simulations capture the qualitative aspects of

the experimental results nicely; however, there are quantita-

tive discrepancies for both the 15 and 90 second data. For

instance, the simulations require a higher dipole strength to

generate similar displacements with time. This could reflect

the fact that the simulation neglects the local field created from

the formation of the dipolar chains as well as higher moment

interactions [20]. At this time we should not expect exact

quantitative agreement for a variety of reasons including ne-

glect of hydrodynamic interactions and magnetic interactions

between chains.

4 Conclusions

As a class of tunable fluids, MR systems are interesting due

to their fast rheologieal response and possible applications in

mechanical systems such as brakes and clutches. In this paper,

we presented initial studies of the dynamics of MR fluids us-

ing diffusing-wave spectroscopy. By accounting for changes

in the light transport properties of the system, we found dy-

namical differences which depend on the interaction strength

between the fluid panicles. The DWS experiments offer the

capability to measure the dynamics of the MR fluid systems

on time- and length-scales that capture the short-wavelength

chain motions. Brownian dynamics simulations of dipolar

chains support our experimental results. Both experiments

and simulations show initial particle displacements that are

independent of field strength; however, at longer times, we see

a constrained sub-diffusive movement that increases with the

dipolar interactions. We plan to investigate the quantitative

agreement between simulations and experiments by incorpo-

rating hydrodynamic interactions and chaining effects into our

simulations in the near future.
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